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Abstract—Training large-scale vision models for autonomous
driving is computationally expensive and requires extensive man-
ual annotation. While reducing dataset size could address these
limitations, it typically results in degraded model performance.
In this paper, we propose a novel self-supervised data selection
framework that leverages vision foundation models to identify
and retain high-value training samples, enabling efficient dataset
curation without compromising performance. Our approach fine-
tunes a foundation model’s vision encoder using a contrastive
objective, then perform density-based clustering in its learned
embedding space to retain only those samples that maximally
preserve semantic diversity. Through experiments, we show that
training on our curated subset outperforms models trained on
the full dataset, and exceeds random selection in semantic seg-
mentation tasks. Additionally, our comparisons across different
foundation model architectures and segmentation backbones pro-
vide insights into effective dataset curation. Our results highlight
that self-supervised data selection can significantly reduce both
annotation and computational overhead, providing a scalable
alternative to naively expanding datasets.

I. INTRODUCTION

Deep learning has revolutionized computer vision, partic-
ularly in autonomous driving where high-quality perception
is crucial for safety-critical decisions [1]–[4]. However, the
increasing complexity of autonomous driving models demands
not only substantial computational resources but also massive
datasets of diverse traffic scenarios, weather conditions, and
road environments [5]. Training state-of-the-art perception
models can require extensive computation time and significant
GPU resources, making development impractical for many
research teams and companies with limited resources [6].
While reducing dataset size could mitigate these computa-
tional demands, traditional sampling approaches often lead
to significant performance degradation, and manual selection
becomes infeasible given the scale of modern autonomous
driving datasets [7], [8]. This challenge is further amplified by
the inherent characteristics of autonomous driving data: they
contain high-resolution multi-view images with large memory
footprints, require expensive expert annotation for safety-
critical tasks, and suffer from substantial redundancy due to
consecutive frames capturing nearly identical scenes [9], [10].
Moreover, the common assumption that all training samples
contribute equally to model learning has been increasingly
challenged, suggesting that automated and intelligent data
selection could maintain or even improve model performance
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while dramatically reducing computational and storage re-
quirements [7], [11].

Vision Foundation Models (VFMs), have emerged as pow-
erful tools for understanding and representing visual data
through their training on vast and diverse datasets [12]–
[14]. Through self-supervised learning on internet-scale data,
these models have demonstrated remarkable capabilities in
learning rich semantic representations that generalize across
different visual domains [15]. Their ability to project diverse
images into a semantically meaningful embedding space,
where similar scenarios naturally cluster together, makes them
particularly suitable for analyzing large-scale autonomous
driving datasets. This semantic understanding, combined with
their strong generalization capabilities across different data
distributions, has made VFMs valuable for various computer
vision tasks [12], [13].

In this work, we introduce a dataset subset selection
framework that leverages the representational power of vi-
sion foundation models to address redundancy in large-scale
autonomous driving datasets. As illustrated in fig. 1, our
approach consists of two key components: First, we fine-tune
the VFM image encoder using a contrastive learning objective
[16], optimizing it to capture the nuanced similarities between
driving scenarios in its latent space. Second, we leverage
this learned representation through density-based clustering to
identify and retain the most representative samples, effectively
eliminating redundancy while preserving the semantic diver-
sity crucial for autonomous driving tasks. Through this two-
stage process, our method can automatically identify and select
the most informative samples while removing redundant data
points, particularly beneficial for autonomous driving datasets
where consecutive frames often capture highly similar scenes.
We demonstrate the efficacy of our approach on the task of
semantic segmentation, where extensive experiments reveal
that our intelligent sampling strategy not only outperforms
random data selection but also achieves competitive—and in
some cases superior—performance compared to training on
the full dataset.

Our contributions are two-fold. First, we propose a novel
two-stage subset selection framework that leverages self-
supervised fine-tuning of VFMs and density-based clustering
to mitigate redundancy in large-scale autonomous driving
datasets while preserving critical semantic diversity. Second,
extensive experiments on semantic segmentation tasks reveal
that our approach achieves performance on par with full
dataset training using only a fraction of the data, outperform-
ing conventional random sampling.
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Fig. 1. Overview of our two-stage dataset subset selection framework. Left: Fine-tuning the VFM image encoder using contrastive learning, where augmented
versions of input images are mapped to similar representations in CLIP space. Training pairs are created from the same base image to encourage feature
consistency across different visual transformations. Right: Using the fine-tuned encoder for subset selection through density-based clustering to identify
representative samples.

II. RELATED WORK

In this section, we examine three key areas of related work.
First, we review VFMs and their applications (section II-A).
We then explore VFMs’ role in autonomous driving (sec-
tion II-B), followed by an analysis of subset selection methods
(section II-C) for efficient dataset curation.

A. Vision Foundation Models

VFMs have emerged as a transformative paradigm in com-
puter vision, analogous to large-scale language models in
natural language processing. They are trained on extensive and
diverse image collections—often without explicit labels—to
learn a universal feature representation that can be adapted to a
broad spectrum of downstream tasks with minimal fine-tuning.
By capturing both low-level and high-level semantics, these
models offer robust generalization, even under distributional
shifts or limited labeled data.

A well-known example is CLIP [17], which employs
image-text pairs to align visual and textual modalities within
a shared embedding space. This alignment enables zero-
shot classification and flexible retrieval, demonstrating strong
resilience to style variations and out-of-distribution scenar-
ios. Another prominent line of research, exemplified by
DINO [18], exploits self-distillation to refine features without
explicit labels, thereby boosting performance in tasks such
as object detection and segmentation. Building on DINO’s
principles, DINOv2 [19] incorporates masked image modeling
for increased stability and scalability, facilitating training on
even larger datasets while retaining transferability. Further
extending these ideas into the realm of text-conditioned object
detection, Grounding DINO [20] precisely localizes image
regions based on natural language prompts.

Parallel to these developments, the Segment Anything
Model (SAM) [21] has risen to prominence in object segmen-
tation. Leveraging an extensive training corpus, SAM produces

high-quality segmentation masks in a zero-shot manner, under-
scoring its robustness across diverse tasks. Collectively, these
VFMs provide a solid and flexible backbone for vision-centric
pipelines, particularly in scenarios where large labeled datasets
are scarce or where significant domain shifts are anticipated.
Their general-purpose encoders can be easily integrated and
fine-tuned, often requiring only minimal overhead, ultimately
improving reliability in real-world vision applications. This
adaptability and efficacy underscore the foundation role these
models play in driving advances in modern computer vision.

For a comprehensive overview of the field, we refer readers
to several surveys and reviews [12], [22].

B. Vision Foundation Models in Autonomous Driving

VFMs, particularly SAM [21] and DINO [19], have
emerged as powerful tools in autonomous driving perception
tasks. These models have demonstrated capabilities in under-
standing complex driving scenes and have been adapted to
address various challenges specific to autonomous vehicles.
In the autonomous driving domain, several pioneering works
have leveraged VFMs to enhance perception capabilities. For
instance, Calib-Anything [23] introduces a zero-shot approach
using SAM for LiDAR-camera calibration, eliminating the
need for additional training data. Shan et al. [24] conduct
comprehensive studies on SAM’s segmentation performance
under adverse weather conditions, crucial for ensuring reliable
autonomous driving systems in challenging environments. The
adaptation of VFMs has also led to significant advances
in semantic understanding of driving scenes. SPINO [25]
demonstrates the effectiveness of DINOv2’s [19] task-agnostic
features for few-shot panoptic segmentation across diverse
autonomous driving datasets. Furthermore, VFMs have proven
valuable in enhancing 3D perception capabilities. SEAL [26]
introduces self-supervised representation learning for large-
scale 3D point cloud processing using SAM-inspired archi-
tectures, while Peng et al. [27] improve unsupervised domain
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adaptation in 3D semantic segmentation through instance mask
utilization. RadOcc [28] advances 3D scene understanding by
incorporating SAM for shape priors and segment-guided affin-
ity distillation in occupancy prediction tasks. Despite these
advancements, challenges remain in adapting VFMs for au-
tonomous driving applications, particularly in fully capturing
3D spatial information and effectively integrating multi-modal
sensor data, such as LiDAR point clouds. These limitations
stem from the specialized architectures required for processing
diverse sensor inputs in autonomous driving systems.

C. Dataset Subset Selection

The challenge of reducing large-scale image datasets while
maintaining model performance has become increasingly crit-
ical in modern machine learning workflows, particularly in au-
tonomous driving where data volumes are substantial. Among
various strategies, clustering-based approaches, notably k-
means variants, have emerged as foundational methods due
to their computational efficiency. Ougiaroglou et al. [29]
pioneered a method utilizing k-means clustering to identify
representative samples through centroid selection. While ef-
fective for simple classification datasets, this approach faces
limitations in autonomous driving scenarios where scenes ex-
hibit complex object co-occurrences. The ERHC approach [30]
advanced this concept by employing k-median clustering,
offering improved robustness to outliers. Further refinements
by Panhalkar and Doye [31] introduced nearest-neighbor cen-
troid selection to enhance instance diversity. However, recent
research by Byerly et al. [32] challenges these methods,
suggesting that samples distant from cluster centers often carry
more informative features.

Alternative strategies have focused on feature space com-
pression while maintaining the original dataset size. Birvinskas
et al. [33] demonstrated the effectiveness of Discrete Cosine
Transform for signal compression, while Reddy et al. [34] ex-
tensively evaluated Principal Component Analysis (PCA) and
Linear Discriminant Analysis (LDA) for large-scale datasets.
Although these dimensionality reduction methods successfully
reduce computational requirements, they do not address the
fundamental challenge of redundant sample retention in the
training process.

Recent developments have introduced more sophisticated
approaches to dataset curation. Embedding-based tools, exem-
plified by Labelbox [35], facilitate efficient data organization
through semantic clustering, though they remain dependent
on human supervision. Submodular optimization and core-
set selection methods [36], [37] offer theoretical guarantees
for data coverage but incur significant computational costs.
Recently, Stage et al. [11] demonstrated that an AD dataset
can be reduced using a similarity-based approach in the latent
space of CLIP. However, the method is highly dependent on
the chosen threshold.

The diverse landscape of subset selection methods un-
derscores the ongoing challenge of balancing three critical
factors: dataset size reduction, semantic diversity preservation,
and computational efficiency. Notably, while these methods

have been extensively validated on classification tasks with
clearly defined class boundaries, their application to complex
autonomous driving scenarios remains largely unexplored. In
the context of autonomous driving, where dataset complexity
includes high-resolution multi-view images, varying environ-
mental conditions, and intricate urban scenes, developing
methods that effectively address these trade-offs while main-
taining model performance remains an active and challenging
research area.

III. METHODOLOGY AND EVALUATION

This section first presents the vision foundation models
and their corresponding backbone architectures used in our
experimental evaluation (section III-A). We then detail our
framework’s methodology (section III-B), followed by a de-
scription of the benchmark dataset used for evaluation (sec-
tion III-C). Finally, we introduce the downstream task and
evaluation metrics used to assess our framework’s effective-
ness (section III-D).

A. Pre-trained Vision Foundation Models

We evaluate CLIP [17] with multiple backbone architectures
to assess their effectiveness in dataset subset selection. Specif-
ically, we examine both ResNet variants (RN50, RN101) [38]
and Vision Transformer (ViT-B/16) [39], providing a compar-
ative analysis between traditional convolutional architectures
and modern transformer-based approaches 1.

B. Dataset Subset Selection Methodology

Our framework performs dataset subset selection through a
two-stage process: (1) fine-tuning a vision foundation model
to ensure semantically similar images are embedded closer
together, and (2) density-based analysis in the learned feature
space to identify representative samples. Let D = {xi}Ni=1

denote our training dataset with N samples, where each xi ∈
RH×W×3 represents an RGB image.

In the first stage, we fine-tune a VFM encoder:

fθ : RH×W×3 → Rd (1)

using multi-view contrastive learning. For each image xi, we
apply a stochastic augmentation function T to generate k
different views:

vji = T (xi)
k

j=1 (2)

These views are then mapped to a d-dimensional embedding
space by the encoder:

zji = fθ(v
j
i ), zji ∈ Rd (3)

We optimize the encoder parameters θ using a contrastive
objective that maximizes the cosine similarity between embed-
dings of different views of the same image while minimizing
the cosine similarity across different images:

1CLIP: https://github.com/openai/CLIP
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L(θ) = −
N∑
i=1

k∑
j=1

k∑
l=j+1

log
exp((zji )

T zli/|z
j
i ||zli|/τ)∑

m ̸=i exp((z
j
i )

T zlm/|zji ||zlm|/τ)
(4)

where τ > 0 is a temperature parameter that controls the
concentration of the distribution.

In the second stage, we employ DBSCAN [40], [41] to
identify representative samples in the learned feature space.
For each sample xi, we compute its ℓ2-normalized embedding:

ei =
fθ(xi)

∥fθ(xi)∥2
. (5)

Let E = { ei}Ni=1 be the set of all normalized embeddings. A
point p ∈ E is a core point if

|{ q ∈ E : ∥ep − eq∥2 ≤ ϵ}| ≥ minPts, (6)

where ϵ > 0 is the maximum neighborhood radius, and minPts
is the minimum number of points required to form a dense
region. Points that do not satisfy this criterion are considered
outliers. In this way, DBSCAN adapts to the underlying
distribution by grouping semantically similar embeddings into
clusters while isolating sparse outliers.

Let Cj ⊂ E denote the j-th cluster produced by DBSCAN.
Its centroid is given by

µj =
1

|Cj |
∑
i∈Cj

ei. (7)

To form the final subset S, we select the ⌊α|Cj |⌋ samples
in Cj closest to µj under cosine similarity, for α ∈ (0, 1].
Concretely,

S =
⋃
j

{top ⌊α|Cj |⌋ samples in Cj closest to µj} .

This approach ensures that S retains the semantic diversity of
the original dataset while reducing redundancy.

C. Dataset

We evaluate our framework on the Cityscapes dataset [42],
which contains high-resolution (2048 × 1024) urban street
scenes from 50 different cities. The dataset includes 2,975
training images and 500 validation images, all with fine-quality
pixel-level semantic annotations across 19 classes. Each image
in Cityscapes captures complex urban environments with di-
verse scenes including roads, buildings, vehicles, pedestrians,
and various static objects.

We use the standard training set of Cityscapes (Dtrain

with 2,975 images) to perform our subset selection. The
corresponding validation set (Dval with 500 images) is used
to evaluate the performance of models trained on our selected
subsets.

D. Evaluation and Metrics

We evaluate our subset selection approach using
DeepLabV3+ [43] as our semantic segmentation architecture.
To demonstrate the generalizability of our method across
different network capacities, we employ three distinct
backbone networks: MobileNetV3 [44], ResNet50, and
ResNet101 [38]. Let S denote our selected subset and
Dtrain the full training set. For each backbone architecture
fϕ with parameters ϕ, we train the model to minimize the
cross-entropy loss:

LCE(ϕ) = − 1

|S|
∑

(x,y)∈S

C∑
c=1

yc log(fϕ(x)c) (8)

where C is the number of Cityscapes classes and yc represents
the one-hot encoded ground truth for class c. Models are
optimized using SGD with momentum of 0.9, initial learning
rate of 0.01, and weight decay of 1e−4.

For evaluation, we use the mean Intersection over Union
(mIoU) metric on the validation set Dval. For a predicted seg-
mentation mask ŷ and ground truth y, the mIoU is computed
as:

mIoU =
1

C

C∑
c=1

|ŷc ∩ yc|
|ŷc ∪ yc|

(9)

where ŷc and yc represent the predicted and ground truth
masks for class c, respectively.

IV. EXPERIMENTS

This section introduces our experimental results. First, we
examine the fine-tuning of CLIP’s latent space (section IV-A)
to enhance feature representation for autonomous driving
scenarios. We then evaluate our subset selection methodology
through comprehensive experiments (section IV-B).

A. Fine-Tuning CLIP

While CLIP [17] has demonstrated capabilities in learn-
ing visual representations from internet-scale data, its fea-
ture space may not inherently capture the nuanced semantic
relationships crucial for autonomous driving scenarios. To
investigate this limitation and our proposed solution, we con-
duct a systematic analysis of representation dynamics through
contrastive fine-tuning.

Figure 1 presents a comparative study of CLIP embeddings
before and after our domain-specific fine-tuning. We select
two urban driving scenes from Cityscapes and apply four
distinct augmentations: grayscale conversion, color jittering,
horizontal flipping, and posterization. These transformations,
while altering the visual appearance, preserve the semantic
content relevant to AD tasks. By projecting these embeddings
into 2D space, we reveal crucial insights into the representation
learning process.

In the base CLIP embeddings (left), we observe a
transformation-centric organization where visually similar
augmentations cluster together across different base images.
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Fig. 2. Effect of CLIP fine-tuning on feature representations. Top: Two random Cityscapes images with their augmented versions (Greyscale, Color Jitter,
Horizontal Flip, and Posterize). Bottom: t-SNE visualization of embeddings before (left) and after (right) fine-tuning.

For instance, all grayscale transformations appear proximally
located, regardless of their source scene. This suggests that the
pre-trained CLIP model exhibits a bias toward low-level visual
features, potentially a consequence of its internet-scale training
where style variations dominate semantic relationships.

The fine-tuned CLIP embeddings (right) demonstrate a
fundamental reorganization of the feature space. Here, we
observe the emergence of semantically coherent clusters where
different augmentations of the same base image form tight
groupings. This reorganization indicates that our fine-tuning
approach successfully shifts the model’s attention from low-
level transformations to scene-level semantic understanding.
Notably, the distance between augmented views of the same
scene significantly decreases, while the separation between
different urban scenes is maintained or enhanced. The CLIP
[17] model now recognizes that different views of the same
street scene should be considered semantically equivalent,
even under various visual transformations.

B. Subset Selection Experiment

We evaluate our subset selection framework across different
sampling ratios α ∈ {0.1, 0.25, 0.5}, corresponding to 10%,
25%, and 50% of the original dataset Dtrain. We perform
experiments with three different backbone architectures for
DeepLabV3+ [43], comparing their performance on our se-
lected subsets against both random sampling and full dataset

training. This setup enables us to analyze both the effectiveness
of our selection method across different dataset sizes and its
generalization across network architectures of varying capac-
ities. The segmentation results for different sampled datasets
are shown in Table I.

The results in Table I demonstrate that our VFM-guided se-
lection using CLIP-ViT-B/16 consistently outperforms random
sampling across all backbone architectures. Notably, with only
50% of the training data, our method achieves performance on
par with or exceeding that of full-dataset training when using
the MobileNetV3 backbone.

Among the CLIP variants, ViT-B/16 exhibits superior per-
formance over its ResNet-based counterparts, particularly at
lower sampling rates. This suggests that the transformer-based
architecture’s ability to capture rich semantic representations is
more effective in identifying representative samples. Further-
more, the performance improvements remain consistent across
different segmentation backbones, highlighting the robustness
and generalizability of our selection strategy across architec-
tures of varying capacity.

V. CONCLUSION

This work presents a framework for dataset subset selection
in autonomous driving through vision foundation models.
Our approach demonstrates that carefully curated subsets,
selected through a combination of self-supervised fine-tuning
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TABLE I
SEMANTIC SEGMENTATION PERFORMANCE (MIOU) ON CITYSCAPES VALIDATION SET USING DIFFERENT SUBSET SELECTION STRATEGIES WITH THREE

DEEPLABV3+ [43] BACKBONES. BOLD NUMBERS INDICATE BEST PERFORMANCE PER COLUMN.

Segmentor Backbone MobileNetV3 ResNet50 ResNet101
Reduction Rate 10% 25% 50% 100% 10% 25% 50% 100% 10% 25% 50% 100%

Random 0.552 0.618 0.685 0.727 0.607 0.663 0.728 0.745 0.631 0.692 0.735 0.769
CLIP-RN50 0.545 0.631 0.701 0.727 0.595 0.681 0.731 0.745 0.610 0.689 0.740 0.769

CLIP-RN101 0.556 0.646 0.691 0.727 0.602 0.666 0.727 0.745 0.616 0.692 0.740 0.769
CLIP-ViT-B/16 0.561 0.639 0.728 0.727 0.622 0.690 0.744 0.745 0.645 0.698 0.764 0.769

and density-based clustering in the learned feature space,
can achieve performance comparable to full dataset training.
Our evaluation on Cityscapes reveals that models trained on
our selected subsets not only consistently outperform random
sampling but achieve competitive—and in some cases supe-
rior—performance using only 50% of the original data.

Several promising research directions emerge from this
work. First, investigating the generalizability of our frame-
work across different autonomous driving datasets and diverse
perception tasks beyond semantic segmentation would provide
valuable insights into its broader applicability. Second, adapt-
ing this methodology for online subset selection in real-time
autonomous systems presents an important challenge, particu-
larly in scenarios where data distributions evolve dynamically.

Through this work, we challenge the paradigm that larger
datasets necessarily lead to better performance, demonstrating
instead that subset selection can maintain model performance
while significantly reducing computational overhead.
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