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Abstract—Autonomous vehicles drive millions of miles on the
road each year. Under such circumstances, deployed machine
learning models are prone to failure both in seemingly normal
situations and in the presence of outliers. However, in the
training phase, they are only evaluated on small validation
and test sets, which are unable to reveal model failures due
to their limited scenario coverage. While it is difficult and
expensive to acquire large and representative labeled datasets for
evaluation, large-scale unlabeled datasets are typically available.
In this work, we introduce label-free model failure detection for
lidar-based point cloud segmentation, taking advantage of the
abundance of unlabelled data available. We leverage different
data characteristics by training a supervised and self-supervised
stream for the same task to detect failure modes. We perform a
large-scale qualitative analysis and present LidarCODA, the first
publicly available dataset with labeled anomalies in real-world
lidar data, for an extensive quantitative analysis.

I. INTRODUCTION

In machine learning, utilizing a fully labeled dataset for
training, validation, and testing is typical. In autonomous
driving, 70 - 85 % of the data is usually reserved for training,
leaving only 15 - 30 % for both validation and testing [1]-
[3]. These small evaluation datasets stand in stark contrast
to the millions of miles driven on public roads during deploy-
ment [4]. As a result, many failure modes of machine learning
models, be it in seemingly normal situations or due to corner
cases, are not captured in the evaluation sets. As large-scale
unlabeled fleet data is generally available due to the much-
reduced cost [5]-[7], there is an untapped potential to use this
data for the evaluation of machine learning models.

In order to detect failure modes, there are many active
research areas. Active learning [8] is concerned with contin-
uously enriching training data by querying samples from a
set of unlabeled data points. Discrepancies between different
sensor systems can also be used to query samples [9]. In error
estimation, many approaches try to utilize unlabeled test sets to
evaluate models [10]. Label refinement compares given labels,
e.g., by an auto-labeling process, with new proposals [11]. All
of these methods have in common that they utilize or compare
two or more different results for the same task. However, we
are unaware of approaches that take advantage of different
training paradigms to detect model failures. In this work, we
introduce the concept of complementary learning to leverage
different data characteristics of the training dataset. We train
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Fig. 1. Model Failure Detection. The top left point cloud shows a supervised
and the top right a self-supervised motion segmentation. The supervised model
falsely classifies the pedestrian in the front left as static. Our approach exposes
this model failure, as highlighted in red in the bottom image.

two models, one supervised and the other self-supervised, to
detect model failures. Our main contributions are:

o Label-free evaluation for lidar-based point cloud segmen-
tation based on complementary learning with a super-
vised and a self-supervised model

e LidarCODA, the first publicly available real-world
anomaly dataset with labeled lidar data, to quantitatively
evaluate the sensitivity of the approach to outliers

All code to run our experiments and generate the Lidar-
CODA dataset is available on GitHub'.

II. RELATED WORK

The concept of comparing the outputs of two or more neural
networks was already introduced in 1994 by Cohn et al., where
they queried samples for active learning based on the disagree-
ment between neural networks [12]. Since then, the variability
in model predictions has been widely used to detect anomalies
or errors. Ensemble diversity is especially well studied, as it
was shown to lead to better performance [13], robustness [14],
uncertainty quantification [15], and detection of outliers or
distribution shifts [16]-[18]. While no uniform metric for
ensemble diversity exists, measures like disagreement of mod-
els, double fault measure, or output correlation are widely
used [19]. Ensemble diversity can be implicitly enhanced
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Fig. 2. Overview. Given point clouds, we derive semantic motion labels in a supervised (sv) fashion and perform ground segmentation and derive predictive
motion labels in a self-supervised (ssv) fashion. Subsequently, we perform point-wise discrepancy detection and classify potential model failures.

via random initialization [15], noise injection or dropout, or
explicitly via bagging, boosting, or stacking. Compared to
ensembles, mixtures of experts [20] enforce higher model
specialization and thus more component diversity, leading to
better detection of out-of-distribution data [21].

The approaches mentioned above involve a combination of
several neural networks with similar or identical architectures.
Active learning is another research field interested in the
detection of model failures. Here, uncertainty derived from
ensembles is resource-intensive and thus only rarely used as
part of a querying strategy [22]—[24]. Similarly, disagreements
in a query-by-committee setting can be used to select sam-
ples [25]. In autonomous driving, also contradicting detections
from sensors can be used as triggers, e.g., when radar and
camera detections do not match [9]. Discrepancies between
teacher and student models, typically known from knowledge
distillation, can also be utilized [26]. As test sets are often
small and not representative, directly estimating the accuracy
of a model with only unlabeled data is of high interest [10],
[27]-[29]. Here, we often see simple classification tasks or
approaches that estimate an overall error that cannot be applied
to individual samples. In some cases, generated pseudo-labels
are utilized for further training steps [30], [31].

Disagreements can also be used for detecting erroneous
labels. Ground truth labels in large vision datasets are of-
ten error-prone when auto-labeling processes based on large
models are employed [32]. Detecting label errors with dis-
agreements can be done by predicting a novel or refined label,
and uncertainties can be generated by predicting multiple such
labels [11], [33], [34]. This way, also noisy labels introduced
by human errors can be detected [35].

Robustness during deployment is often achieved with sensor
fusion, which, quite differently, purposefully aims to com-
plement the weaknesses of one sensor with the strengths of
another. Thus, disagreements are both typical and wanted, with
the aim of resolving them [36]. However, also data from a
single sensor can be split into multiple streams to increase
robustness. For example, object detection can be improved by
combining appearance and geometry [37] or temporality and
geometry [38], [39]. In performance monitoring [40], [41], but
also in outlier or anomaly detection [42], typically, a primary
model performing a regular task is accompanied by a learned
or model-based module that provides some sort of uncertainty
for the results of the regular task.

Research Gap. Many of the analyzed works utilizing
disagreements deal with toy problems and only analyze classi-
fication tasks, which are not sufficient to truly understand the
shortcomings of a model that is designed for the complex task
of autonomous driving. Many works analyze model outputs of
the same architecture, leveraging differences during training.
However, this way, the same data characteristics are being used
during training. Disagreement-based approaches in designing
triggers for active learning [9] and increasing robustness
during deployment [37] are most similar to our approach, but
these industry demonstrations are not accompanied by scien-
tific works and are thus hard to evaluate. Finally, to the best of
our knowledge, no work exists that utilizes different training
paradigms to detect model failures through disagreements.

III. METHOD

To assess model performance without labeled validation or
test sets, we perform complementary training for the same
task in order to detect model failures and classify challenging
scenarios. The ability to detect model failures is based on
the intuition that different training paradigms leverage dif-
ferent data characteristics from the same training data set.
We demonstrate this approach with the motion segmentation
of lidar point clouds for autonomous driving. As shown in
Fig. 2, we first derive motion labels in a supervised and self-
supervised fashion. Here, the first paradigm leverages human
knowledge through labels, given only context from static
scenes. On the other hand, the second paradigm leverages
temporal information inherent in the data. Typically, these
paradigms are combined either in a pre-training context [43] or
with a combined loss during learning [44]. Based on a point-
wise comparison, we detect discrepancies and cluster them for
better interpretation. Finally, an oracle examines and classifies
the model failures to better understand challenging situations.

A. Supervised Semantic Motion Labels

We derive semantic motion labels with a supervised se-
mantic segmentation model [45] to determine whether a
point belongs to a static or dynamic class. Some classes do
not provide clear information about the motion state of the
points, e.g., points assigned to the class cyclist at a traffic
light may be static in the case of a red light and dynamic
in the case of a green light. By also performing supervised
motion segmentation [46], we further subdivide classes into
semantic motion labels, as shown in Fig. 3.
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Fig. 3. Supervised Semantic Motion Labels. The left semantic segmentation
allows no distinction between the parked car at the bottom left and the moving
car at the top right. The middle image shows a motion segmentation, where
the parked car was classified as static, and the moving car as dynamic. Finally,
the right image shows the fused semantic motion labels.

B. Self-Supervised Predictive Motion Labels

In order to predict motion labels for a given point cloud, we
first filter out the ground [47] to focus on objects in the scene,
a common pre-processing step of scene flow models [48]-[52].
Based on self-supervised flow prediction [51] of the remaining
points, we aim to derive motion labels, indicating whether
a point is static or dynamic. The model takes consecutive
point clouds as input and predicts the future motion for each
lidar point in the form of a 3D displacement vector. The
scene flow model does not distinguish between the point’s
own motion and the observer’s ego-motion and represents the
overall motion of a point between two consecutive frames. In
order to derive relative displacements, we need to correct for
the ego-motion. This can be done by leveraging or learning
odometry information [53]. After predicting the future point
cloud Xt+1 = X; + fi, we apply the learned rigid body
transformation 7;y;_,; of an odometry model, transforming
the predicted point cloud back into the coordinate system of
X;. This gives the future point cloud Xt_H, which contains
only the predicted relative motion without the ego motion.

As a result, static objects line up closely with the original
data of X;, and only dynamic objects show a predicted
displacement, as shown in Fig. 4 a).

Two-Stage Clustering. An analysis of the velocity values
of the flow predictions showed that separating static from
dynamic classes is infeasible in a point-wise fashion, as a
strong overlap exists. What we found, however, is a signif-
icant difference when considering instance-wise normalized
standard deviations, as shown in Fig. 5. While we performed
this analysis with ground-truth labels, in unlabeled data, the
necessity arises to form instance clusters.

As shown in Fig. 4 b), we utilize DBSCAN [54] to cluster
the point clouds spatially. A cluster is classified as potentially
dynamic if the normalized standard deviation of the cluster’s
velocity is below 0.12, as identified through a grid search. To
further reduce false positives, potentially dynamic points are
clustered based on their flow vectors. Points with a similar flow
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Fig. 4. Self-Supervised Predictive Motion Labels. The first image shows
the original point cloud in green and the point cloud transformed by the scene
flow model and compensated by the ego-motion in red. The second and third
images show the result of the spatial and flow-based clustering, respectively.
The fourth image shows the final predictive motion labels, with dynamic
points in red and static points in green.

are clustered, causing fewer static clusters to be incorrectly
classified as dynamic. Next, spatially separated points are
grouped together based on their flow, as shown in Fig. 4 c).
Here, the points on the left and right edges belonging to static
objects now form a cluster, which changes the distribution
of flow vectors within this cluster, causing it to be classified
as static. Finally, the newly found clusters are classified as
dynamic if the speed of the cluster is above 4 km/h, based on
typical velocity profiles of pedestrians, as visible in Fig. 4 d).

C. Discrepancy Detection and Failure Classification

After obtaining motion labels from both the supervised and
the self-supervised stream, contradictions between the labels
are detected, as shown in Fig. 2. Only the lidar points per
frame for which both streams predicted a label are considered.
Given a semantic and a predictive motion label for each
lidar point, there exist four categories: Points which both
models deem static (green e); points which both models deem
dynamic (blue e); points where the supervised stream predicts
a static point and the self-supervised a dynamic one (red e),
and points where the supervised stream predicts a dynamic
point and the self-supervised a static one (yellow ). Finally,
we cluster instances with contradicting labels so an oracle can
classify both complete scenes and single instances.

D. Implementation Details

For all models shown in Fig. 2, we utilized publicly avail-
able models and model architectures to demonstrate the mod-
ularity of our approach. We trained the supervised semantic
segmentation model SalsaNext [45] and the supervised motion
segmentation model of Chen et al. [46] on the KITTI-360
dataset [55], [56], as it is a large dataset that contains semantic
labels, motion labels, and odometry data. The training was
performed on an NVIDIA RTX A6000. Hyperparameters were
taken from the original papers [45], [46]. For the remaining
three models, we used available pre-trained model weights.
For ground segmentation, we deployed GndNet [47]. For self-
supervised scene flow estimation, we used FlowStep3D [51].
For the self-supervised odometry model, we deployed De-
LORA [53]. More details can be found in [57].
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Fig. 5. Self-Supervised Label Generation. The left graph shows that the
magnitude of point-wise flow vectors is insufficient to distinguish between
dynamic and static points. The boxplot on the right shows that the normalized
standard deviation per instance is significantly lower for dynamic instances.

IV. EVALUATION

Model failures can occur in seemingly normal situa-
tions [58]-[61], but models are especially prone to failure
in the presence of anomalies or outliers [58], [62]-[67]. In
Section IV-A, we first analyze our approach given regular data.
Here, no ground truth for especially challenging situations
is available. Thus, we perform a qualitative evaluation by
manually analyzing our method on over 20,000 frames.

In Section I'V-B, the second part of the evaluation, we focus
on anomalies. Here, ground truth is available. As CODA [68],
the largest real-world dataset with anomalies, only provides
labels in camera space, we first introduce LidarCODA, an
extension that provides labels in lidar space. Subsequently,
we perform a quantitative evaluation to better understand the
sensitivity of our method towards outliers.

Fig. 6 provides an overview of the discrepancy detection,
the second-to-last step of our approach, as shown in Fig. 2.
For regular scenarios, the majority of points are predicted
as static by both models and around 5 % of the points
show model contradictions. For outlier scenarios, many more
disagreements take place. However, a large variety among the
subsets of LidarCODA can be observed. In the following, we
first qualitatively examine scenarios in which the models dis-
agree. Subsequently, we quantitatively examine the correlation
between disagreements and anomlies in the environment.

A. Regular Scenarios

Regular scenarios represent the majority of miles driven
during deployment, and it is important to understand situations
in which models fail. However, the evaluation under regular
scenarios is challenging, as no ground truth is available. Thus,
we manually examined our approach on over 20,000 frames.

Evaluation Data. For training, KITTI-360 and several
sequences of the KITTI Odometry were used. To minimize
perceptual failures due to a domain shift, we perform the
qualitative evaluation on the remaining 20,350 frames of the
KITTI Odometry sequences 11-21. The datasets are closely
related, as both were captured in Karlsruhe, Germany with a
Velodyne HDL-64E lidar.
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Fig. 6. Discrepancy Detection. Given mostly normal data in the KITTI
Odometry dataset, the two streams agree on 95 % of the data (green, blue).
For outlier scenarios, as provided by LidarCODA, many more discrepancies
(red, yellow) are detected.

Evaluation. As shown in Fig. 2, the final stage of our
approach is the classification of model failure modes. Our
qualitative evaluation is performed by a human oracle. For
visual inspection, we utilize lidar points mapped onto the
corresponding RGB image for an improved scene understand-
ing, as shown in Fig. 7 with the color scheme introduced in
Section III-C. In most cases, both streams were correctly con-
sistent. In the following, we qualitatively present representative
examples of detected model failures and highlight those that
occurred frequently, suggesting general model flaws.

First, we discuss model failures of the supervised stream,
which is the model under test in most cases. Here, the
two streams contradict each other. We show representative
examples in Fig. 7. Scene 1 shows a turning car and two
moving bicyclists, where one bicyclist is wrongly labeled
as static by the supervised stream. Scene 2 contains two
walking pedestrians that are wrongly classified as static by the
supervised stream. Scene 3 shows a parking car misclassified
as dynamic by the supervised stream. Scenes 4 and 5 show a
car moving slowly and a car moving backward, respectively.
These cases demonstrate effectively that our approach enables
the detection of regular but challenging scenarios that lead
to model failures. Such model failures remain undetected in
small evaluation datasets. We find various weak points in each
stream, characterized by repeated occurrence. Specifically, the
supervised model under test has weaknesses in distinguishing
between dynamic and static objects in specific situations, e.g.,
at red lights or when a car is parked directly in front of the
ego vehicle. Examples of such situations are given in scenes
6 and 7 of Fig. 7.

Next, we analyze scenarios where self-supervised model
failures occur, detected by correct predictions of the super-
vised stream. Fig. 8 shows representative scenes. Scene 1
contains two distant pedestrians walking, wrongly classified
as static by the self-supervised stream. In scene 2, a parked
car is misclassified as dynamic by the self-supervised stream.
Scenes 3, 4, and 5 show walking pedestrians or moving cars
incorrectly classified as dynamic. These cases demonstrate that
our approach enables the detection of challenging temporal
scenarios. The self-supervised stream classifies an above-
average number of objects as dynamic when the ego-vehicle
turns or goes over speed bumps. An example is shown in
Fig. 8, where in scene 6, the vehicle turns, and in scene
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Fig. 7. Supervised Model Failures. These exemplary images show model
failures of the supervised stream, which can be detected due to contradicting
outputs of the self-supervised model.

8, it drives over a speed bump. Another weak point is fast
oncoming vehicles on highways, often classified as static, as
seen in scene 7. Finally, a common weakness is small clusters
on the side, which are incorrectly classified as dynamic, as in
scene 9, where a window is classified as dynamic.

In rare cases, both models are incorrectly consistent, i.e.,
both streams agree, but the label is incorrect in both cases.
We show examples in Fig. 9. Here, the left scene shows two
walking pedestrians that are incorrectly classified as static, and
the right scene shows a parked car that is classified as dynamic.

B. Outlier Scenarios

Scenarios with anomalies or outliers are known to lead
to model failures [69]. So far, the evaluation of lidar-based
anomaly detection models has been challenging. Evaluation
datasets are either unavailable [70], [71] or utilize known
classes but exclude them from training data [72]. Thus, we
first introduce LidarCODA, a real-world anomaly dataset with
labeled anomalies in lidar space. Subsequently, we quantita-
tively evaluate how sensitive our approach is to anomalies in
the environment.

Evaluation Data. For the evaluation, we utilized data from
the CODA dataset [68], the only publicly available real-world
dataset that provides lidar data and includes anomalies [73].
The CODA dataset provides anomaly labels for objects based
on three existing data sets: KITTI [74], ONCE [5], and
nuScenes [I]. CODA defines an anomaly as an object that
“blocks or is about to block a potential path of the self-
driving vehicle” [68] and/or “does not belong to any of the
common classes of autonomous driving benchmarks” [68].
While this risk-aware definition is not always in line with the
methodology of our approach, where objects that block the
path in front of the ego vehicle are not necessarily hard to
segment or predict, we chose it because CODA is currently
the most relevant real-world anomaly dataset [73].

Fig. 8. Self-Supervised Model Failures. These exemplary images show
model failures of the self-supervised model, which can be detected due to
contradicting outputs of the supervised stream.

For the CODA-KITTI split, the authors of CODA manually
reviewed all misc labels available in the ground truth and rela-
beled some as anomalies according to a labeling policy. This
enables us to examine our approach with only a small domain
gap quantitatively. For CODA-nuScenes, the authors similarly
adopted available annotations in a manual process. Finally,
for CODA-ONCE, they deployed an automated anomaly de-
tection approach, making this subset the most relevant. CODA
includes 1,500 scenes with a total of 5,937 anomaly instances.
Among those, 4,746 belong to the superclass traffic_facility,
followed by 929 vehicle and 197 obstruction instances. With
396, most vehicle instances can be found in CODA-KITTL

The CODA dataset provides anomaly labels only in the form
of 2D bounding boxes in image space. However, point-wise
labels in 3D lidar space are necessary to utilize CODA for our
approach. Therefore, we present LidarCODA, a dataset based
on the CODA dataset [68] for evaluation. Based on a frustum-
based filter, subsequent clustering, and manual inspection, we
transfer the original 2D labels from image space into refined,
point-wise 3D labels that go beyond the coarse characteristic
of the provided bounding boxes. More details can be found
in [75]. LidarCODA is the first real-world anomaly dataset
for object-level anomalies [62] with annotated lidar data, as
shown in Fig. 10. Here, the different lidar systems utilized
also become clearly visible. Due to the sparse point cloud

Fig. 9. Simultaneous Model Failures. Examples where both streams produce
model failures. Both cases are misclassified and are, therefore, consistent.
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TABLE 1 TABLE II
LIDARCODA SUBSETS. EVALUATION OF OUR APPROACH ON CODA SUPERCLASSES. EVALUATION OF OUR APPROACH ON SEVEN
LIDARCODA AND ITS THREE SUBSETS. SUPERCLASSES.

Dataset #Frames mloUT AP1T ARt F11 Superclass #Instancess mloU+ AP1 ARt F11

LidarCODA 1,412 8.9 132 262 175  Pedestrian 16 33.9 44.1 373 404

LidarCODA-ONCE 1,034 8.9 140 271 184 Cyclist 22 41.6 583 495 535

LidarCODA-KITTI 307 10.9 13.3 29.0 183  Vehicle 736 33.0 48.3 41.0 444

LidarCODA-nuScenes 71 0.4 0.7 1.0 0.8  Animal 5 0.0 0.0 0.0 0.0
Traffic facility 3,360 28.6 39.9 339 36.7
Obstruction 125 20.5 34.0 22.9 27.4
Misc 15 36.7 60.7 37.9 46.7

of nuScenes, many small or distant labeled anomalies in the
image space are only covered by a few or no lidar points.

Fig. 10. LidarCODA. Annotated lidar scenes in the three data splits ONCE,
KITTI, and nuScenes, from left to right. Anomalies are shown in red.

Evaluation. To quantitatively evaluate the correlation be-
tween model disagreements and anomalies present in the
environment, we utilize the standard metrics mean Intersection
over Union (mloU), Average Precision (AP), Average Recall
(AR), and F1 score, as shown in Tables I and II. For a fair
evaluation, we consider all points of the lidar point cloud, even
if our approach did not label individual points, e.g., because
they were filtered out during pre-processing. Such cases were
counted as false negatives if an anomaly was missed.

To better understand the suitability of LidarCODA due to
introduced domain shifts, either due to new environments or
due to new sensor setups, we perform experiments on the
individual subsets, as shown in Table I. The results clearly
show that our approach struggles with the nuScenes subset,
which is primarily due to the large domain shift w.r.t to
the sensor setup. Our approach is more sensitive towards
anomalies for the subsets ONCE and KITTI. This is reflected
in Fig. 6, where the CODA subsets also show much higher
detection rates compared to the analysis with regular scenarios.
This aligns with the much higher number of anomalies, even
though the subsets reveal strongly varying behavior patterns.
We generally observe a moderate correlation between model
disagreements and anomalies present in the environment.

Next, we investigate the sensitivity of our approach towards
the superclasses provided by CODA by evaluating points that
have labels assigned by both our approach and the ground
truth. As shown in Table II, our approach shows different
levels of sensitivity given different types of anomalies, being
most sensitive to cyclists and objects of the misc class. The
misc class consists of objects that are “unrecognizable or
difficult to categorize” [68]. These results align well with our
approach, where cyclist instances, which are hard to predict
by the self-supervised stream, and misc instances, which are
rare and thus hard to classify by the supervised stream, lead to
model disagreements, as the complementary model does not
display similar weaknesses in both cases.

V. CONCLUSION

In this work, we have presented a label-free approach
to detect model failures for motion segmentation of point
clouds. We leverage complementary training paradigms to
detect contradicting outputs on the same task, consisting of
a supervised stream for semantic motion labels and a self-
supervised stream for predictive motion labels. This way,
we detect model failures far beyond the limited scope of a
small evaluation dataset. We first inspect model failures in
regular scenarios. By manually analyzing over 20,000 frames
qualitatively, we detect model failures in seemingly normal
scenarios and are able to categorize frequently occurring cases.
In regular scenarios, our method disregards 95 % of the data
as typical, which makes human analysis of the remaining 5 %
feasible even for larger datasets.

Second, we analyzed the sensitivity of our approach towards
scenarios with anomalies, as defined by the CODA dataset, and
showed a moderate sensitivity. In order to quantitatively ex-
amine our approach, we first introduced LidarCODA, the first
real-world dataset with labeled anomalies in lidar space. We
demonstrated that our approach shows an increased sensitivity
to often hard-to-detect and hard-to-predict bicycles as well as
hard-to-categorize objects.

Our approach effectively unveils model failures far beyond
those that can be detected with small evaluation datasets. This
leads to an increased understanding of the model performance
in large-scale deployments, leveraging abundantly available
unlabeled data. Model failures detected by our approach can
be utilized to collect additional training data representing both
static and temporally challenging scenarios.

Limitations. When both streams are wrong, model failures
go undetected. This behavior is known and unavoidable [18],
[30] and can be mitigated by deploying multiple approaches
or triggers to detect challenging scenarios [9]. In addition, our
self-supervised stream depends on a clustering strategy, which
can lead to faulty clusters and misclassifications.
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